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Abstract
In this paper, we study the mathematical structures of the linear response
relation based on Plefka’s expansion and the cluster variation method in terms
of the perturbation expansion, and we show how this linear response relation
approximates the correlation functions of the specified system. Moreover, by
comparing the perturbation expansions of the correlation functions estimated
by the linear response relation based on these approximation methods with
exact perturbative forms of the correlation functions, we are able to explain
why the approximate techniques using the linear response relation work well.

PACS numbers: 02.30.Mv, 02.50.−r, 02.50.Tt, 05.20.−y, 75.10.Nr, 84.35.+i,
87.10.+e, 89.70.+c

1. Introduction

Random spin models are regarded as probabilistic models in which each pair of random
variables interacts with each other. In this model, each node has a random variable (it is
often called a spin variable), and some pairs of nodes are connected by links. These links
represent interactions between random variables. In recent years, this kind of model and
associated theories have been employed not only in statistical mechanics but also in some
areas of information science [1, 2]. Since this kind of model has a complicated structure,
using it for real applications requires reducing computational complexity. Mean-field theory
(MFT) is a well-known theory to be used to avoid such problems. Thus, investigations of the
MFT are important in information science as well as in statistical mechanics [1].

Plefka’s expansion is one of the most important methods of the MFT [3]. Indeed, it is
utilized to resolve problems in machine learning and other applications [2]. This method can
be used to systematically obtain a perturbation from naive mean-field approximations and
obtain the averages of each node with any order of approximation. Note that the average of
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node means the average of the random variable at the node. Hence, the Thouless–Anderson–
Palmer (TAP) equation [4, 5] and its higher-order approximations can be obtained within
this method. The average of the node is one of the most basic and important variables in
statistics. Therefore, Plefka’s expansion is used for a wide range of problems. Besides the
average of the node, the correlation function, or the covariant, is also an important variable
in statistics. For instance, the correlation functions are employed in the learning algorithm of
Boltzmann machines [6]. However, understanding how the correlation functions are calculated
by using Plefka’s expansion is nontrivial. Kappen and Rodrı́guez applied the linear response
relation (LRR) to Plefka’s expansion to calculate the correlation functions [7]. The correlation
functions calculated by their method are approximate values, and it is well known that the
accuracy is good [7–9]. The object of this work is to find why their method leads to good
results. In order to investigate this, we need to examine the mathematical structure of the LRR
based on Plefka’s expansion.

The cluster variation method (CVM) is another one of the most important methods in
the MFT [11]. In this method, the entropies of some of the sets of nodes are introduced
such that one node entropies, two nodes entropies, etc, are regarded as the entropies of basic
clusters. The entropy of a specified system is expressed approximately in terms of a linear
combination of the entropies of these basic clusters. This method can be used to systematically
obtain the mean-field and the Bethe approximations for a specified system. The CVM can
treat the correlation functions within specified basic clusters, but the correlation functions
between random variables on distant nodes are not taken into account directly in this method.
Tanaka applied the LRR to the CVM and calculated the correlation functions between random
variables on distant nodes and he showed that his method can quite accurately estimate such
correlation functions in his numerical experiments [14]. Welling and Teh also applied the LRR
to the Bethe approximation [13]. The Bethe approximation can estimate not only the averages
of single nodes but also the correlation functions between random variables on neighboring
pairs of nodes. In their numerical experiments, these authors compared the approximate
accuracy of the correlation functions between random variables on neighboring pairs of nodes
estimated by the LRR by using the Bethe approximation with those estimated only by the
Bethe approximation and they concluded that the correlation functions estimated by the LRR
based on the Bethe approximation are more precise than the other ones. In this paper, we are
also interested in the mathematical structure of the LRR based on the CVM, and we want to
find why it leads to good results.

Hence, the purpose of this paper is to examine the mathematical structure of the LRR
based on Plefka’s expansion and on the CVM to show why the LRR works well. In section 2,
we outline Plefka’s expansion and the approximate technique based on the LRR (we call this
technique an approximate LRR in the present paper). In section 3, we show the exact form
of the correlation functions using Plefka’s expansion. In section 4, we see the mathematical
structure of the LRR based on Plefka’s expansion and compare it with the exact form given
in section 3. In section 5, we consider the mathematical structure of the LRR based on the
Bethe approximation and compare it with the exact form given in section 3. We provide some
concluding remarks in section 6.

2. Plefka’s expansion and the linear response theorem

Consider a graph consisting of N nodes. Each node is labeled by i ∈ {1, 2, . . . , N}, and a
binary random variable (or a spin variable) Si ∈ {±1} is assigned to a node i, and some pair
of the nodes are connected to each other by links. This system can be regarded as an Ising
spin system. Each pair of nodes i and j interacts with each other by a weighted link which
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is denoted by Jij , and hi acts on node i. Note that Jij is symmetric for its index: Jij = Jji

and Jii = 0. In statistical mechanics, these parameters {Jij } and {hi} are called exchange
interactions and external fields, respectively. The Hamiltonian H determining energy for each
configuration of random variables S = {S1, S2, . . . , SN } is given by

H(S,h,J) = −
∑

i

hiSi −
∑
(ij)

Jij SiSj . (1)

The summation in the first term of equation (1) is taken over all nodes and the summation
in the second term of equation (1) is taken over all distinct pairs of nodes. The notation (ij)

denotes the pair of nodes i and j . h and J denote a set of external fields hi and exchange
interactions Jij , respectively; and they are given. The Helmholtz free energy for the system
specified by the Hamiltonian H is

F(h,J , β) = − 1

β
ln

∑
S

exp (−βH(S,h,J)) , (2)

where β is the inverse temperature and
∑

S denotes the summation taken over all configurations
of random variables:

∑
S = ∑

S1=±1

∑
S2=±1 · · · ∑SN =±1. We want to calculate the averages

of Si at the thermal equilibrium state: 〈Si〉 ≡ −∂F (h,J , β)/∂hi = ∑
S Sip(S), where

〈·〉 denotes the average with respect to the Boltzmann distribution of the Hamiltonian H:
p(S) ∝ exp (−βH(S,h,J)). However, it is difficult to calculate these averages exactly
because of computational complexity. Thus, we need to employ an approximation method.

2.1. Plefka’s expansion

Plefka presented an effective method specifically for this kind of problem which is called
Plefka’s expansion [3] and that we now outline it briefly. Plefka introduced a parameter α into
Hamiltonian (1) as follows:

Ĥ(S,h,J , α) = −
∑

i

hiSi − α
∑
(ij)

Jij SiSj . (3)

Then he introduced the Gibbs free energy G, which is obtained by the Legendre transform of
the Helmholtz free energy determined by Ĥ. Note that the Helmholtz free energy determined
by Ĥ is

F̂ (h,J , β, α) = − 1

β
ln

∑
S

exp(−βĤ(S,h,J , α)). (4)

In the case of α = 1, F̂ = F since Ĥ = H. And by defining mi as mi ≡ −∂F̂ (h,J , β, α)/∂hi ,
the Gibbs free energy is obtained as follows:

G(m,J , β, α) = F̂ (h,J , β, α) +
∑

i

hi(m,J , β, α)mi, (5)

where m = {m1,m2, . . . , mN }. This is the Legendre transform of the Helmholtz free energy
in equation (4). Note that {mi} can be regarded as a set of independent variables, on which
hi depends on equation (5), i.e., hi = hi(m,J , β, α). It follows, then, that by expanding the
Gibbs free energy G with respect to α, one gets the following series:

G(m,J , β, α) = G(m, β, 0) +
∞∑

n=1

αn

n!
gn(m,J , β), (6)

where for n � 1 we define

gn(m,J , β) ≡ ∂nG(m,J , β, α)

∂αn

∣∣∣∣
α=0

. (7)
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This expansion is called Plefka’s expansion. Since gn is O
(
J n

ij

)
, this expansion can be

regarded as the perturbation expansion with respect to weighted links {Jij }. The coefficients
of the expansion up to fourth order are given explicitly as follows [12, 15]:

G(m, β, 0) = 1

β

∑
i

(
1 + mi

2
ln

1 + mi

2
+

1 − mi

2
ln

1 − mi

2

)
, (8)

g1(m,J , β) = −
∑
(ij)

Jijmimj , (9)

g2(m,J , β) = −β
∑
(ij)

J 2
ij

(
1 − m2

i

)(
1 − m2

j

)
, (10)

g3(m,J , β) = −4β2
∑
(ij)

J 3
ijmimj

(
1 − m2

i

)(
1 − m2

j

)
− 6β2

∑
(ijk)

Jij JjkJki

(
1 − m2

i

)(
1 − m2

j

)(
1 − m2

k

)
, (11)

g4(m,J , β) = −2β3
∑
(ij)

J 4
ij

(
1 − m2

i

)(
1 − m2

j

)(
15m2

i m
2
j − 3m2

i − 3m2
j − 1

)
− 48β3

∑
(ijk)

Jij JjkJki

(
1 − m2

i

)(
1 − m2

j

)(
1 − m2

k

)
× (Jijmimj + Jjkmjmk + Jkimkmi)

− 24β3
∑
(ijkl)

Jij JjkJklJli

(
1 − m2

i

)(
1 − m2

j

)(
1 − m2

k

)(
1 − m2

l

)
, (12)

where
∑

(ijk) and
∑

(ijkl) denote that the summation should be taken over all distinct 3- and
4-node clusters, respectively. By setting α = 1, the Hamiltonian Ĥ is equivalent to the
original Hamiltonian H, and equation (6) yields the true Gibbs free energy. Using one of
the properties of the Legendre transform, i.e., ∂G(m,J , β, α)/∂mi = hi(m,J , β, α), one
obtains self-consistent equations to determine {mi} at α = 1:

mi = tanh β

(
hi +

∞∑
n=1

1

n!

∂gn(m,J , β)

∂mi

)
. (13)

Note that mi determined by equation (13) is expected to be equal to the average of Si :
mi = 〈Si〉.

There are infinite terms in equation (6) thus, in practical, one approximates them by finite
terms:

G(m,J , β, 1) ≈ Gn(m,J , β, 1) = G(m, β, 0) +
n∑

k=1

1

k!
gk(m,J , β), (14)

where Gn(m,J , β, 1) is the nth-order approximation of G(m,J , β, 1). Since gn is
O

(
J n

ij

)
,Gn is regarded as an approximation neglecting terms of O

(
J n+1

ij

)
in the true Gibbs

free energy. Under this approximation, {mi} are determined by the following self-consistent
equations:

mi = tanh β

(
hi +

n∑
k=1

1

k!

∂gk(m,J , β)

∂mi

)
. (15)

One regards mi determined by equation (15) as the nth-order approximation of 〈Si〉.
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For instance, the first-order approximation specified by G1 leads to the naive mean-
field approximation, and the second-order approximation specified by G2 leads to the TAP
approximation. Hence, Plefka’s expansion can systematically derive the mean-field, the TAP
or higher-order approximations of the system [3, 12, 15].

2.2. The approximate LRR

In the framework of Plefka’s expansion, one can calculate the average of the random variables
of the system with any order of approximation. However, it is nontrivial to consider how the
correlation functions 〈SiSj 〉 are obtained within this framework. Kappen and several authors
calculated the correlation functions approximately by applying the LRR to Plefka’s expansion
[7–9]. The differentiation of the Helmholtz free energy in equation (2) with respect to hi and
hj is

∂2F(h,J , β)

∂hi∂hi

= −β
(〈SiSj 〉 − 〈Si〉〈Sj 〉

) ≡ −χij . (16)

We now introduce the matrices χ and A whose elements ij are χij and Aij , respectively. Aij

is defined by

Aij ≡ ∂2G(m,J , β, 1)

∂mi∂mj

. (17)

The matrices χ and A are each other’s inverse, i.e., χ = A−1. This is the property of the
Legendre transform [7, 8]. Therefore, one can calculate a correlation function 〈SiSj 〉 by the
relation

〈SiSj 〉 = 1

β
χij + 〈Si〉〈Sj 〉 = 1

β
[A−1]ij + mimj , (18)

where [A−1]ij is the element ij of the inverse of the matrix A and {mi} are determined by
equation (13). If one considers all the terms in equation (6), the last equality in equation (18)
is true. The relationship expressed by equation (18) is known as the LRR.

To obtain the correlation functions approximately, the matrix A is replaced by the matrix
A(n), whose element ij is defined by

A
(n)
ij ≡ ∂2Gn(m,J , β, 1)

∂mi∂mj

, (19)

where Gn(m,J , β, 1) is the nth-order approximation of G(m,J , β, 1). Thus, one obtains
m

(n)
ij , which is the nth-order approximation of the correlation function by using the LRR,

defined by

m
(n)
ij ≡ 1

β
χ

(n)
ij + mimj , (20)

where χ
(n)
ij is the element ij of the matrix χ(n), which is the inverse of the matrix A(n), i.e.,

χ(n) = (A(n))−1, and {mi} are determined by equation (15). To distinguish equation (20) from
equation (18), we call equation (20) an approximate LRR. Although the approximate LRR
does not hold exactly, it can be assumed to hold approximately: 〈SiSj 〉 ≈ m

(n)
ij . However, it

is not clear how equation (20) approximates true correlation functions.
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3. Exact expanded form of correlation functions

In this section, we show the exact perturbative form of the correlation functions using Plefka’s
expansion as given in section 2. The parameters {Jij } are independent variables of both
F̂ (h,J , β, α) and G(m,J , β, α), and both are the Legendre transform of each other. It
is the basic property of the Legendre transform that the derivatives of F̂ (h,J , β, α) and
G(m,J , β, α) with respect to such kind of variables as {Jij } (sometimes these variables
are called passive variables) are equivalent. In fact, this property is confirmed easily by
differentiating equation (5) with respect to Jij :

∂G(m,J , β, α)

∂Jij

= ∂F̂ (h,J , β, α)

∂Jij

+
∑

k

∂F̂ (h,J , β, α)

∂hk

∂hk

∂Jij

+
∑

k

∂hk

∂Jij

mk

= ∂F̂ (h,J , β, α)

∂Jij

, (21)

where we use the relation mi = −∂F̂ (h,J , β, α)/∂hi . This equation holds for any value of
α. Thus, setting α = 1, we obtain

∂F (h,J , β)

∂Jij

= ∂G(m,J , β, 1)

∂Jij

. (22)

Since ∂F (h,J , β)/∂Jij = −〈SiSj 〉, using equation (6), equation (22) yields

〈SiSj 〉 = − ∂

∂Jij

G(m, β, 0) − ∂

∂Jij

∞∑
n=1

1

n!
gn(m,J , β)

= − ∂

∂Jij

∞∑
n=1

1

n!
gn(m,J , β). (23)

This is the exact expanded form of the correlation functions. Using equations (23) and
(9)–(12), we can express the explicit form of the present expansion as follows:

〈SiSj 〉 = mimj + βJij

(
1 − m2

i

)(
1 − m2

j

)
+ 2β2J 2

ijmimj

(
1 − m2

i

)(
1 − m2

j

)
+ β2

(
1 − m2

i

)(
1 − m2

j

) ∑
k

JjkJki

(
1 − m2

k

)
+

β3J 3
ij

3

(
1 − m2

i

)(
1 − m2

j

)(
15m2

i m
2
j − 3m2

i − 3m2
j − 1

)
+ 4β3Jijmimj

(
1 − m2

i

)(
1 − m2

j

) ∑
k

JjkJki

(
1 − m2

k

)
+ 2β3

(
1 − m2

i

)(
1 − m2

j

)∑
k

JjkJkimk

(
1 − m2

k

)(
Jjkmj + Jkimi

)
+ β3

(
1 − m2

i

)(
1 − m2

j

) ∑
k �=i

∑
l �=j

JjkJklJli

(
1 − m2

k

)(
1 − m2

l

)
+ O

(
J 4

ij

)
, (24)

where {mi} are determined by equation (13), i.e., mi = 〈Si〉. The summation
∑

k �=i refers to
the summation taken over all the nodes except node i.
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If there is no link between nodes i and j , the correlation function between random variables
Si and Sj is

〈SiSj 〉 = mimj + β2(1 − m2
i

)(
1 − m2

j

) ∑
k

JjkJki

(
1 − m2

k

)
+ 2β3

(
1 − m2

i

)(
1 − m2

j

)∑
k

JjkJkimk

(
1 − m2

k

)
(Jjkmj + Jkimi)

+ β3(1 − m2
i

)(
1 − m2

j

) ∑
k �=i

∑
l �=j

JjkJklJli

(
1 − m2

k

)(
1 − m2

l

)
+ O

(
J 4

ij

)
, (25)

which can be obtained by setting Jij = 0 in equation (24). Equation (25) expresses the
dependence between non-connecting nodes.

The framework of the (approximate) LRR is widely employed to calculate correlations
in several scientific areas besides physics [10]. However, the exact series expression of the
correlation functions on each system is not always obtained specifically as in this section.
Therefore, to clarify the property of the approximate LRR analytically, we suggest that it is
important to compare the correlation functions estimated by the approximate LRR with the
exact series expression of the correlation functions where their exact series expression can
be obtained specifically. Thus, in the following section, we will examine the mathematical
structures of the approximate LRR expressed by equation (20) in terms of the perturbation
expansion and will compare them with equation (24).

4. The mathematical structure of the approximate LRR

In this section, we examine the mathematical structures of the approximate LRR in terms
of the perturbation expansion with respect to weighted links Jij and clarify the reasons why
the approximate LRR in equation (20) can be expected to be a good approximation of the
correlation functions. We expand the right-hand side of equation (20) at n = 1 and n = 2
with respect to weighted links Jij and compare them with the exact form in equation (24).

4.1. The first-order approximation of the approximate LRR

The correlation function using the first-order approximation of the approximate LRR is

m
(1)
ij = 1

β
χ

(1)
ij + mimj , (26)

where {mi} are determined by equation (15) with n = 1; that is to say, the naive mean-field
equation. Since

A
(1)
ij = ∂2G1(m,J , β, 1)

∂mi∂mj

= δij

β
(
1 − m2

i

) − Jij , (27)

χ
(1)
ij , which is the element ij of the matrix χ(1), is expanded as follows:

χ
(1)
ij = β2Jij

(
1 − m2

i

)(
1 − m2

j

)
+ β3

(
1 − m2

i

)(
1 − m2

j

) ∑
k

JjkJki

(
1 − m2

k

)
+ β4(1 − m2

i

)(
1 − m2

j

) ∑
k

∑
l

JjkJklJli

(
1 − m2

k

)(
1 − m2

l

)
+ O

(
J 4

ij

)
, (28)
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where i �= j , and

χ
(1)
ii = β

(
1 − m2

i

)
+ β3

(
1 − m2

i

)2 ∑
j

J 2
ij

(
1 − m2

j

)
+ β4

(
1 − m2

i

)2 ∑
j

∑
k

Jij JjkJki

(
1 − m2

j

)(
1 − m2

k

)
+ O

(
J 4

ij

)
. (29)

From equations (26), (28) and (29) the correlation function using the first-order approximation
of the approximate LRR yields

m
(1)
ij = mimj + βJij

(
1 − m2

i

)(
1 − m2

j

)
+ β2

(
1 − m2

i

)(
1 − m2

j

)∑
k

JjkJki

(
1 − m2

k

)
+ β3

(
1 − m2

i

)(
1 − m2

j

) ∑
k

∑
l

JjkJklJli

(
1 − m2

k

)(
1 − m2

l

)
+ O

(
J 4

ij

)
(30)

and

m
(1)
ii = 1 + β2

(
1 − m2

i

)2 ∑
j

J 2
ij

(
1 − m2

j

)
+ β3

(
1 − m2

i

)2 ∑
j

∑
k

Jij JjkJki

(
1 − m2

j

)(
1 − m2

k

)
+ O

(
J 4

ij

)
= 1 + O

(
J 2

ij

)
. (31)

When comparing equation (24) with equation (30), we immediately find that up to the first-
order terms both have the same form. It can be explained as follows: G1(m,J , β, 1) can be
identified with G(m,J , β, 1) in a system where the terms of O

(
J 2

ij

)
can be neglected because,

in such a case, A
(1)
ij = Aij , χ

(1)
ij = χij . From equation (24), 〈SiSj 〉 = mimj + βJij

(
1 −

m2
i

)(
1 −m2

j

)
+O

(
J 2

ij

)
and, therefore, the correlation function obtained by using the first-order

approximation of the approximate LRR must be m
(1)
ij = mimj +βJij

(
1−m2

i

)(
1−m2

j

)
+O

(
J 2

ij

)
.

It should be noted that m
(1)
ij has some contributions of the higher-order terms in

equation (24). Although G1 neglects the contribution of the terms of O
(
J 2

ij

)
,m

(1)
ij includes

partial higher-order terms higher than the terms of O(Jij ) in equation (24) (compare
equations (24) with (30)). Indeed, the third term of equation (30) corresponds to the fourth
term of equation (24), and the fourth term of equation (30) includes the eighth term of equation
(24). This suggests that some higher-order terms in m

(1)
ij originate from the lower-order terms

in G1. This is an important characteristic of the approximate LRR. Although we expect that
m

(1)
ii ≈ 〈

S2
i

〉 = 1,m
(1)
ii generally differs from 1 by the contribution of the terms of O

(
J 2

ij

)
.

In the case of this approximation, we can calculate the general terms of m
(1)
ij , and the

result is as follows (see appendix A):

m
(1)
ij = mimj + βJij

(
1 − m2

i

)(
1 − m2

j

)
+

(
1 − m2

i

)(
1 − m2

j

) ∞∑
n=1

βn+1
∑

i1,i2,...,in

Jii1Ji1i2 · · · Jinj

× (
1 − m2

i1

)(
1 − m2

i2

) · · · (1 − m2
in

)
. (32)

This correlation function includes the contribution of the terms which are dominant in the case
of the Hopfield model [15], and these terms can be expected to appear among the higher-order
terms in equation (24).

Since it is difficult to estimate the contribution of the higher order terms of m
(1)
ij for general

cases, as an example, we will explain it briefly with the simple case as follows. We consider
the system where all pair of nodes are connected, i.e., the full-connected graph, and all Jij ’s
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and hi’s take the constant values: Jij = J/N and hi = h. It is one of the simplest mean-field
models. From uniformity of the system, averages 〈Si〉 for all i should take the same value and,
thus, we write 〈Si〉 ≡ 〈S〉 for all i. Moreover, mi for all i determined by the naive mean-field
equations should also take the same value and, thus, we write mi ≡ m for all i. In this case,
for large N, 〈SiSj 〉 in equation (24) obtained by Plefka’s expansion and m

(1)
ij in equation (30)

obtained by the approximate LRR up to the presented orders are reduced to

〈SiSj 〉 = 〈S〉2 +
βJ

N
(1 − 〈S〉2)2 +

2β2J 2

N2
〈S〉2(1 − 〈S〉2)2 +

β2J 2

N
(1 − 〈S〉2)3

+
β3J 3

3N3
(1 − 〈S〉2)2(15〈S〉4 − 6〈S〉2 − 1) +

8β3J 3

N2
〈S〉2(1 − 〈S〉2)3

+
β3J 3

N
(1 − 〈S〉2)4 + O(β4J 4) (33)

and

m
(1)
ij = m2 +

βJ

N
(1 − m2)2 +

β2J 2

N
(1 − m2)3 +

β3J 3

N
(1 − m2)4 + O(β4J 4), (34)

respectively. When comparing equations (33) and (34), we find that m
(1)
ij includes the

contribution of only the terms of O(1) and O(1/N) in equation (33), and omits those of
O(1/N2) therein. Except the terms of O(1), i.e., the first terms of equations (33) and (34),
the terms of O(1/N) are the most dominant and are expected to play an important role for
large N. This simple example suggests that m

(1)
ij treats the significant terms effectively. This

argument is not always valid in general cases, but we think that the situation is similar for the
systems where variances of the distribution of the external interactions are small.

Diagonal elements of the approximate LRR, m
(1)
ii in equation (31), up to the presented

order are reduced to

m
(1)
ii = 1 +

β2J 2

N
(1 − m2)3 +

β3J 3

N
(1 − m2)4 + O(β4J 4), (35)

for the above simple system. If the difference between 〈S〉 and m is very small, the terms
of O(1) and O(1/N) in equation (34) are almost corresponding to those in equation (33).
Therefore, m

(1)
ij is almost corresponding to 〈SiSj 〉 up to O(1/N) in high-temperature regions.

While, the difference between 1 and m
(1)
ii keeps O(1/N) at any m within (−1, 1). It may be

said that the approximation of 〈SiSj 〉 and
〈
S2

i

〉
(= 1) is qualitatively different in the presented

method. Identifying the reason why such a difference arises is one of our future objectives.

4.2. The second-order approximation of the approximate LRR

The correlation function using the second-order approximation of the approximate LRR is

m
(2)
ij = 1

β
χ

(2)
ij + mimj , (36)

where {mi} are determined by equation (15) with n = 2, which is the TAP equation. Since

A
(2)
ij = ∂2

∂mi∂mj

G2(m,J , β, 1)

=
{

1

β
(
1 − m2

i

) − Jij + β
∑

k

Jik

(
1 − m2

k

)}
δij − Jij − 2βJ 2

ijmimj , (37)
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by expanding χ
(2)
ij , which is the element ij of the matrix χ(2) defined as the inverse of the

matrix A(2), in a similar way to the previous section and using equation (36), we obtain the
correlation function when using the second-order approximation of the approximate LRR as
follows:

m
(2)
ij = mimj + βJij

(
1 − m2

i

)(
1 − m2

j

)
+ 2β2J 2

ijmimj

(
1 − m2

i

)(
1 − m2

j

)
+ β2

(
1 − m2

i

)(
1 − m2

j

) ∑
k

JjkJki

(
1 − m2

k

)
+ 2β3

(
1 − m2

i

)(
1 − m2

j

)∑
k

JjkJkimk

(
1 − m2

k

)
(Jjkmj + Jkimi)

+ β3
(
1 − m2

i

)(
1 − m2

j

) ∑
k �=i

∑
l �=j

JjkJklJli

(
1 − m2

k

)(
1 − m2

l

)
−β3J 3

ij

(
1 − m2

i

)2(
1 − m2

j

)2
+ O

(
J 4

ij

)
(38)

and

m
(2)
ii = 1 + β3(1 − m2

i

)2 ∑
j �=i

∑
k �=i

Jij JjkJki

(
1 − m2

j

)(
1 − m2

k

)
+ 4β3mi

(
1 − m2

i

)2 ∑
j

J 3
ijmj

(
1 − m2

j

)
+ O

(
J 4

ij

)
= 1 + O

(
J 3

ij

)
. (39)

A comparison of equations (24) with (38) shows that up to the second-order both have the
same form, and m

(2)
ij has contributions of some higher-order terms than O

(
J 2

ij

)
in equation

(24) (compare equations (24) with (38)). m
(2)
ij takes the contributions of higher-order terms

in equation (24) into account more precise than m
(1)
ij . Therefore, m

(2)
ij can be expected to

accommodate complex situations better than m
(1)
ij . Moreover, from equation (39), m

(2)
ii is not

equal to 1 as a result of the contribution of the terms of O
(
J 3

ij

)
.

From the above arguments presented in this section, we found that the correlation
functions estimated by the approximate LRR have contributions of some higher-order terms
than terms taken into account in Gn. For instance, in spite of neglecting the terms of O

(
J 2

ij

)
in

G1,m
(1)
ij , which is calculated by using G1, has contributions of some of the terms of O

(
J 2

ij

)
in

equation (24). Similarly, in spite of neglecting terms of O
(
J 3

ij

)
in G2,m

(2)
ij , which is calculated

by using G2, has contributions of some of the terms ofO
(
J 3

ij

)
in equation (24). It is an important

property of the approximate LRR. This property is the reason why the approximate LRR can
be assumed to be a good approximation of the correlation functions.

5. Correlation functions estimated by the Bethe approximation and by the
approximate LRR

In this section, we compare the correlation functions estimated by the Bethe approximation in
the CVM with those obtained by the approximate LRR. The Bethe approximation can estimate
not only the average of the random variables on each of the nodes but also the correlation
functions between two distinct random variables on each neighboring pair of nodes. The
Bethe approximation regards the correlation function between Si and Sj as

ξij = coth(2βJij )
(
1 −

√
1 − (

1 − mi
2 − mj

2
)
tanh2(2βJij ) − 2mimj tanh(2βJij )

)
, (40)
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where ξij denotes the correlation function estimated by the Bethe approximation, and {mi} are
determined by the Bethe approximation [16]. It is well known that the Bethe approximation
gives exact results when the system is regarded as a tree. By expanding ξij with respect to Jij ,
we obtain the following series:

ξij = mimj + βJij

(
1 − m2

i

)(
1 − m2

j

)
+ 2β2J 2

ijmimj

(
1 − m2

i

)(
1 − m2

j

)
+

β3J 3
ij

3

(
1 − m2

i

)(
1 − m2

j

)(
15m2

i m
2
j − 3m2

i − 3m2
j − 1

)
+ O

(
J 4

ij

)
. (41)

It is known that the Bethe–Gibbs free energy includes only the contributions of the
mean-field entropies and the contributions of neighboring pair of nodes in Plefka’s expansion
(equations (8)–(10) and the first term of equations (11) and (12)) [16]. Thus, the Bethe–Gibbs
free energy is

GB(m,J , β) = 1

β

∑
i

(
1 + mi

2
ln

1 + mi

2
+

1 − mi

2
ln

1 − mi

2

)
−

∑
(ij)

Jijmimj

− β

2

∑
(ij)

J 2
ij

(
1 − m2

i

)(
1 − m2

j

) − 2β2

3

∑
(ij)

J 3
ijmimj

(
1 − m2

i

)(
1 − m2

j

)
− β3

12

∑
(ij)

J 4
ij

(
1 − m2

i

)(
1 − m2

j

)(
15m2

i m
2
j − 3m2

i − 3m2
j − 1

)
+ O

(
J 5

ij

)
. (42)

The explicit derivation of GB in equation (42) is given in appendix B.
To apply the framework of the approximate LRR in equation (20) to equation (42), it is

possible to express the correlation function as

m
(B)
ij = 1

β
χ

(B)
ij + mimj , (43)

where m
(B)
ij denotes the correlation function estimated by the approximate LRR based on the

Bethe approximation and χ
(B)
ij denotes element ij of a matrix which is the inverse of the matrix

A(B), whose element ij is defined by

A
(B)
ij ≡ ∂2

∂mi∂mj

GB(m,J , β)

=
{

1

β
(
1 − m2

i

) + β
∑

k

J 2
ik

(
1 − m2

k

)
+ 4β2

∑
k

J 3
ikmimk(1 − mk)

2

}
δij

− Jij − 2βJ 2
ijmimj − 2β2J 3

ij

3

(
1 − 3m2

i

)(
1 − 3m2

j

)
+ O

(
J 4

ij

)
. (44)

Expanding χ
(B)
ij with respect to the weighted links {Jij } and using equation (43), we obtain

m
(B)
ij = mimj + βJij

(
1 − m2

i

)(
1 − m2

j

)
+ 2β2J 2

ijmimj

(
1 − m2

i

)(
1 − m2

j

)
+ β2

(
1 − m2

i

)(
1 − m2

j

) ∑
k

JikJkj

(
1 − m2

k

)
+

β3J 3
ij

3

(
1 − m2

i

)(
1 − m2

j

)(
15m2

i m
2
j − 3m2

i − 3m2
j − 1

)
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+ 2β3
(
1 − m2

i

)(
1 − m2

j

)∑
k

JikJkjmk

(
1 − m2

k

) (
Jikmi + Jkjmj

)
+ O

(
J 4

ij

)
+ β3

(
1 − m2

i

)(
1 − m2

j

) ∑
k �=j

∑
l �=i

JikJklJlj

(
1 − m2

k

)(
1 − m2

l

)
(45)

and

m
(B)
ii = 1 + β3

(
1 − m2

i

)2 ∑
j �=i

∑
k �=i

Jij JjkJki

(
1 − m2

j

)(
1 − m2

k

)
+ O

(
J 4

ij

)
= 1 + O

(
J 3

ij

)
. (46)

From equation (41), one finds that ξij only includes the contributions of neighboring pairs
of nodes. In contrast, m

(B)
ij includes a wider range of contributions of nodes including some

loops. This is an important point when considering the approximate accuracies of both ξij and
m

(B)
ij . Welling and Teh compared the approximate accuracies of both approximations in their

numerical experiment and concluded that the correlation function estimated by m
(B)
ij is more

precise than ξij for neighboring pair of nodes [13]. Therefore, we found that a wide range of
contributions of nodes play an important role in achieving approximate accuracy.

For non-neighboring pair of nodes i and j, ξij = mimj , while

m
(B)
ij = mimj + β2

(
1 − m2

i

)(
1 − m2

j

)∑
k

JikJkj

(
1 − m2

k

)
+ 2β3

(
1 − m2

i

)(
1 − m2

j

)∑
k

JikJkjmk

(
1 − m2

k

) (
Jikmi + Jkjmj

)
+ β3

(
1 − m2

i

)(
1 − m2

j

) ∑
k �=j

∑
l �=i

JikJklJlj

(
1 − m2

k

)(
1 − m2

l

)
+ O

(
J 4

ij

)
. (47)

For non-neighboring pairs of nodes, ξij does not take the dependence between Si and Sj into
account, while m

(B)
ij does. Tanaka combined the CVM and the LRR to calculate the correlation

functions within the framework of the CVM, and his numerical experiments showed that his
method provides good estimates of the correlation function between random variables on
distant nodes [14]. The fact that m

(B)
ij takes the dependence of non-neighboring pairs of nodes

into account explains why Tanaka’s method gives good results. Although his formulations
used a more general framework of the CVM than the Bethe approximation [14], we are of the
opinion that his method works well essentially because it conforms to the principles discussed
in this section.

Using the framework of the cavity method, Montanari and Rizzo added the contributions
of higher-order correlation functions to the Bethe approximation to compute loop corrections
[17]. They employed the approximate LRR to estimate correlation functions, and thus the
lowest-order the correlation functions called ‘two-point correlation functions’ in their paper
correspond to m

(B)
ij s. Since m

(B)
ij includes the contributions of some loops, it can be expected

that the contributions of the correlation functions work effectively to compute loop corrections
in their method.

6. Concluding remarks

In the present paper, we showed the exact form of the correlation functions in terms of the
perturbation expansion with respect to weighted links and the mathematical structure of
the approximate LRR by using the naive mean-field approximation, the TAP equation and the
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Bethe approximation. A comparison of the correlation functions of the exact expansions with
those of the approximate LRR showed that they have similar forms in higher-order terms. This
means that the approximate LRR can effectively consider effects of surrounding nodes. We
found that these similarities make the approximate LRR a good approximation. Moreover,
we have explained that the approximate LRR is effective when used in the CVM because
the approximate LRR for the CVM can treat higher-order correlations which are not treated
directly by the CVM only.

Remark that the effectiveness of the approximate LRR argued in the present paper assumes
that the approximate accuracy of {mi} is good. For instance, the exact expanded forms of
the correlation functions obtained by Plefka’s expansion in equation (24) provide the exact
correlation functions when {mi} take exact values. Thus, higher-order correlations treated by
the approximate LRR should behave effectively when {mi} take values close to exact values.
If the approximate accuracy of {mi} is poor, the approximate LRR cannot be guaranteed to
provide a good approximation. We discussed the contributions of the higher-order terms of the
first-order approximate LRR using a simple system in section 4.1. However, for more complex
systems, the contributions of the higher-order terms are anticipated to be more complex and
the effectiveness of terms omitted in the approximate LRR may be significant. To clarify the
effectiveness of the approximate LRR for more complex systems, this will be the object of our
future work.
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Appendix A. Derivation of equation (32)

In this appendix, we show the derivation of equation (32). To expand χ(1) with respect to Jij

s, we obtain the following series:

χ(1) = χ(1)|J=0 +
∞∑

n=1

1

n!

∑
(i1j1)

· · ·
∑
(injn)

∂nχ(1)

∂Ji1j1 · · · ∂Jinjn

∣∣∣∣
J=0

Ji1j1 · · · Jinjn
. (A.1)

From equation (27), if all Jij ’s are equal to zero, i.e., J = 0, we get

χ(1)|J=0 = (A(1))−1|J=0 = diag
(
β
(
1 − m2

1

)
, . . . , β

(
1 − m2

N

)) ≡ D(1). (A.2)

Since the element kl of the matrix ∂A(1)/∂Jij is −δij,kl which is Kronecker’s delta defined as
follows

δij,kl =
{

1 ((ij) and (kl) represent the same link)

0 (otherwise),
(A.3)

we obtain the first-order terms of equation (A.1):∑
(i1j1)

∂χ(1)

∂Ji1j1

∣∣∣∣
J=0

= −
∑
(i1j1)

χ(1) ∂A(1)

∂Ji1j1

χ(1)

∣∣∣∣
J=0

= (−1)
∑
(i1j1)

D(1) ∂A(1)

∂Ji1j1

D(1). (A.4)
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The second-order terms of equation (A.1) are

1

2!

∑
(i1j1)

∑
(i2j2)

∂2χ(1)

∂Ji1j2∂Ji2j2

∣∣∣∣
J=0

= 1

2!

∑
(i1j1)

∑
(i2j2)

D(1) ∂A(1)

∂Ji1j1

D(1) ∂A(1)

∂Ji2j2

D(1)

+
1

2!

∑
(i1j1)

∑
(i2j2)

D(1) ∂A(1)

∂Ji2j2

D(1) ∂A(1)

∂Ji1j1

D(1)

= (−1)2
∑
(i1j1)

∑
(i2j2)

D(1) ∂A(1)

∂Ji1j1

D(1) ∂A(1)

∂Ji2j2

D(1), (A.5)

since all elements of the matrix ∂2A(1)/∂Jij ∂Jkl are zero. The third-order terms of
equation (A.1) are

1

3!

∑
(i1j1)

∑
(i2j2)

∑
(i3j3)

∂3χ(1)

∂Ji1j2∂Ji2j2∂Ji3j3

∣∣∣∣
J=0

= (−1)3
∑
(i1j1)

∑
(i2j2)

∑
(i3j3)

D(1) ∂A(1)

∂Ji1j1

D(1) ∂A(1)

∂Ji2j2

D(1) ∂A(1)

∂Ji3j3

D(1). (A.6)

All terms of the higher-order derivatives above the second-order vanish. Therefore, we obtain
the nth-order terms of equation (A.1) as follows:

1

n!

∑
(i1j1)

· · ·
∑
(injn)

∂nχ(1)

∂Ji1j1 · · · ∂Jinjn

∣∣∣∣
J=0

= (−1)n
∑
(i1j1)

· · ·
∑
(injn)

D(1) ∂A(1)

∂Ji1j1

D(1) ∂A(1)

∂Ji2j2

D(1) · · · D(1) ∂A(1)

∂Jinjn

D(1). (A.7)

Therefore, we obtain the expanding form of the matrix χ(1) as follows:

χ(1) = D(1) +
∞∑

n=1

(−1)n
∑
(i1j1)

· · ·
∑
(injn)

D(1) ∂A(1)

∂Ji1j1

D(1) ∂A(1)

∂Ji2j2

D(1) · · · D(1) ∂A(1)

∂Jinjn

D(1)

× Ji1j1 · · · Jinjn
. (A.8)

Using equation (A.8), we obtain equation (32).

Appendix B. Derivation of GB in equation (42)

The Bethe–Helmholtz free energy is given by

FB(h,J , β) = −
∑

i

himi −
∑
(ij)

Jij ξij +
1

β

∑
i

(1 − zi)
∑

Si=±1

1 + Simi

2
ln

1 + Simi

2

+
1

β

∑
(ij)

∑
Si ,Sj =±1

1 + Simi + Sjmj + SiSj ξij

4
ln

1 + Simi + Sjmj + SiSj ξij

4
,

(B.1)

where mi and ξij are determined so as to satisfy ∂FB/∂mi = ∂FB/∂ξij = 0 and zi is defined
as the number of neighbors of node i. mi and ξij are regarded as functions of h,J and β.
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Note that ∂FB/∂ξij = 0 leads to equation (40). To apply equation (41) into FB , we obtain

FB(h,J , β) = 1

β

∑
i

∑
Si=±1

1 + Simi

2
ln

1 + Simi

2
−

∑
i

himi −
∑
(ij)

Jijmimj

− β

2

∑
(ij)

J 2
ij

(
1 − m2

i

)(
1 − m2

j

) − 2β2

3

∑
(ij)

J 3
ijmimj

(
1 − m2

i

)(
1 − m2

j

)
− β3

12

∑
(ij)

J 4
ij

(
1 − m2

i

)(
1 − m2

j

)(
15m2

i m
2
j − 3m2

i − 3m2
j − 1

)
+ O

(
J 5

ij

)
. (B.2)

The above calculations are discussed particularly in [16]. To obtain the Bethe–Gibbs free
energy (42), we employ equation (B.2) instead of equation (B.1).

Since ∂FB/∂mi = 0 and {mi} are functions of h,

∂FB

∂hi

= −mi +
∑

k

∂FB

∂mk

∂mk

∂hi

= −mi. (B.3)

Therefore, we obtain the Bethe–Gibbs free energy, which is the Legendre transform of the
Bethe–Helmholtz free energy (B.2), as follows:

GB(m,J , β) = FB +
∑

i

himi. (B.4)

This leads to the expression of GB in equation (42).
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